新聞動態
首頁-新聞動態常見工業廢水處理技術
常見工業廢水處理技術
常見工業廢水處理技術介紹1
企業,主要分布在電子、塑膠、電鍍、五金、印刷、食品、印染等行業。從廢水的排放量和對環境污染的危害程度來看,電鍍、線路板、表面處理等以無機類污染物為主的廢水和食品、印染、印刷及生活污水等以有機類污染物為主的廢水是處理的重點。本文主要介紹幾種比較典型的工業廢水的處理技術。
一、表面處理廢水
1.磨光、拋光廢水
在對零件進行磨光與拋光過程中,由于磨料及拋光劑等存在,廢水中主要污染物為COD、BOD、SS。
一般可參考以下處理工藝流程進行處理:
廢水→調節池→混凝反應池→沉淀池→水解酸化池→好氧池→二沉池→過濾→排放
2.除油脫脂廢水
常見的脫脂工藝有:有機溶劑脫脂、化學脫脂、電化學脫脂、超聲波脫脂。除有機溶劑脫脂外,其它脫脂工藝中由于含堿性物質、表面活性劑、緩蝕劑等組成的脫脂劑,廢水中主要的污染物為pH、SS、COD、BOD、石油類、色度等。
一般可以參考以下處理工藝進行處理:
廢水→隔油池→調節池→氣浮設備→厭氧或水解酸化→好氧生化→沉淀→過濾或吸附→排放
該類廢水一般含有乳化油,在進行 氣浮前應投加CaCl2破乳劑,將乳化油破除,有利于用氣浮設備去除。當廢水中COD濃度高時,可先采用厭氧生化處理,如不高,則可只采用好氧生化處理。
3.酸洗磷化廢水
酸洗廢水主要在對鋼鐵零件的酸洗除銹過程中產生,廢水pH一般為2-3,還有高濃度的Fe2+,SS濃度也高.
可參考以下處理工藝進行處理:
廢水→調節池→中和池→曝氣氧化池→混凝反應池→沉淀池→過濾池→pH回調池→排放
磷化廢水又叫皮膜廢水,指鐵件在含錳、鐵、鋅等磷酸鹽溶液中經過化學處理,表面生成一層難溶于水的磷酸鹽保護膜,作為噴涂底層,防止鐵件生銹。該類廢水中的主要污染物為:pH、SS、PO43-、COD、Zn2+等。
可參考以下處理工藝進行處理:
廢水→調節池→一級混凝反應池→沉淀池→二級混凝反應池→二沉池→過濾池→排放
4.鋁的陽極氧化廢水
所含污染物主要為pH、COD、PO43-、SS等,因此可采用磷化廢水處理工藝對陽極氧化廢水進行處理。
二、電鍍廢水
電鍍生產工藝有很多種,由于電鍍工藝不同,所產生的廢水也各不相同,一般電鍍企業所排出的廢水包括有酸、堿等前處理廢水,氰化鍍銅的含氰廢水、含銅廢水、含鎳廢水、含鉻廢水等重金屬廢水。此外還有多種電鍍廢液產生。
對于含不同類型污染物的電鍍廢水有不同的處理方法,分別介紹如下:
1.含氰廢水
目前處理含氰廢水比較成熟的技術是采用堿性氯化法處理,必須注意含氰廢水要與其它廢水嚴格分流,避免混入鎳、鐵等金屬離子,否則處理困難。
該法的原理是廢水在堿性條件下,采用氯系氧化劑將氰化物破壞而除去的方法,處理過程分為兩個階段,第 一 階段是將氰氧化為氰酸鹽,對氰破壞不徹底,叫做不完全氧化階段,第二階段是將氰酸鹽進一步氧化分解成二氧化碳和水,叫完全氧化階段。
反應條件控制:
一級氧化破氰:pH值10~11;理論投藥量:簡單氰化物CN-:Cl2=1:2.73,復合氰化物CN-:Cl2=1:3.42。用ORP儀控制反應終點為300~350mv,反應時間10~15分鐘。
二級氧化破氰:pH值7~8(用H2SO4回調);理論投藥量:簡單氰化物CN-:Cl2=1:4.09,復合氰化物CN-:Cl2=1:4.09。用ORP儀控制反應終點為600~700mv;反應時間10~30分鐘。反應出水余氯濃度控制在3~5mg/1。
處理后的含氰廢水混入電鍍綜合廢水里一起進行處理。
2.含鉻廢水
含六價鉻廢水一般采用鉻還原法進行處理,該法原理是在酸性條件下,投加還原劑硫酸亞鐵、亞硫酸鈉、亞硫酸氫鈉、二氧化硫等,將六價鉻還原成三價鉻,然后投加氫氧化鈉、氫氧化鈣、石灰等調pH值,使其生成三價鉻氫氧化物沉淀從廢水中分離。
還原反應條件控制:
加硫酸調整pH值在2.5~3,投加還原劑進行反應,反應終點以ORP儀控制在300~330mv,具體需通過調試確定,反應時間約為15-20分鐘。攪拌可采用機械攪拌、壓縮空氣攪拌或水力攪拌。
混凝反應控制條件:
pH值:7~9,反應時間:15~20分鐘。
3.綜合重金屬廢水
綜合重金屬廢水是由含銅、鎳、鋅等非絡合物的重金屬廢水以及酸、堿前處理廢水所組成。此類廢水處理方法相對簡單,一般采用堿性條件下生成氫氧化物沉淀的工藝進行處理。
處理工藝流程如下:
綜合重金屬廢水→調節池→快混池→慢混池→斜管沉淀池→過濾→pH回調池→排放
反應條件一般控制在pH值9~10,具體zui佳pH條件由調試時確定。反應時間快混池為20~30分鐘,慢混池10~20分鐘。攪拌方式以機械攪拌zui好,也可用空氣攪拌。
4.多種電鍍廢水綜合處理
當一個電鍍廠含有多種電鍍廢水,如含氰廢水、含六價鉻廢水、含酸堿、重金屬銅、鎳、鋅等綜合廢水,一般采取廢水分流處理的方法,首先含氰廢水、含鉻廢水應從生產線單獨分流收集后,分別按照上述對應的方法對含氰、含鉻廢水進行處理,處理后的廢水混入綜合廢水中與其一起采用混凝沉淀方法進行后續處理。
處理工藝流程如下:
含氰廢水→調節池→一級破氰池→二級破氰池→綜合廢水池
含鉻廢水→調節池→鉻還原池→綜合廢水池
綜合廢水→綜合廢水池→快混池→慢混池→斜管沉淀池→中間池→過濾器→pH回調池→排放
常見工業廢水處理技術介紹 2
三、線路板廢水
生產線路板的企業在對線路板進行磨板、蝕刻、電鍍、孔金屬化、顯影、脫膜等的工序過程中會產生線路板廢水。線路板廢水主要包括以下幾種:
化學沉銅、蝕刻工序產生的絡合、螯合含銅廢水,此類廢水pH值在9~10,Cu2+濃度可達100~200mg/l。
電鍍、磨板、刷板前清洗工序產生的大量酸性重金屬廢水(非絡合銅廢水),含退Sn/Pb廢水,pH值在3~4,Cu2+小于100mg/l,Sn2+小于10mg/l及微量的Pb2+等重金屬。
干膜、脫膜、顯影、脫油墨、絲網清洗等工序產生較高濃度的有機油墨廢液,COD濃度一般在3000~4000mg/L。
針對線路板廢水的不同特點,在處理時必須對不同的廢水進行分流,采取不同的方法進行處理。
1.絡合含銅廢水(銅氨絡合廢水)
此類廢水中重金屬Cu2+與氨形成了較穩 定 的 絡合物,采用一般的氫氧化物混凝反應的方法不能形成氫氧化銅沉淀,必須先破壞絡合物結構,再進行混凝沉淀。一般采用硫化法進行處理,硫化法是指用硫化物中的S2-與銅氨絡合離子中的Cu2+生成CuS沉淀,使銅從廢水中分離,而過量的S2-用鐵鹽使其生產FeS沉淀去除。
處理工藝流程如下:
銅氨絡合廢水→調節池→破絡反應池→混凝反應池→斜管沉淀池→中間水池→過濾器→pH回調池→排放
反應條件的控制要根據各廠水質的不同在調試中確定。一般在加硫化物等破絡劑之前將pH值調到中性或偏堿性,防止硫化氫的生成,也有的將pH值調到略偏酸性。硫化物的投藥量根據廢水中銅氨絡離子的量來確定,一般投放過量的藥。在破絡池安裝ORP儀測定,當電位達到-300mv(經驗值)認為硫化物過量,反應完全。對過量的硫化物采用投加亞鐵鹽的方法去除,亞鐵的投加量根據調試確定,通過流量計定量加入。破絡池反應時間為15~20分鐘,混凝反應池反應時間為15~20分鐘。
2.油墨廢水
脫膜和脫油墨的廢水由于水量較小,一般采用間歇處理,利用有機油墨在酸性條件下,從廢水中分離出來生產懸浮物的性質而去除,經過預處理后的油墨廢水,可混入綜合廢水中與其一起進行后續處理,如水量大可單獨采用生化法進行處理。處理工藝流程如下:
有機油墨廢水→酸化除渣池→排入綜合廢水池或進行生化處理
當廢水量少時,反應池內的油墨顆粒物在氣泡上浮力的作用下浮出水面形成浮渣,可以用人工方法撇去;當水量大時,可用板框壓濾機脫水,也可在撇渣后進行生化處理,進一步去除COD。
3.線路板綜合廢水
此類廢水主要包括含酸堿、Cu2+、Sn2+、Pb2+等重金屬的綜合廢水,其處理方法與電鍍綜合廢水相同,采用氫氧化物混凝沉淀法處理。
4.多種線路板廢水綜合處理
當一個線路板廠含有以上幾種線路板廢水時,應將銅氨絡合廢水、油墨廢水、綜合重金屬廢水分流收集,油墨廢水進行預處理后,混入綜合廢水中與其一起進行后續處理,銅氨絡合廢水單獨處理后進入綜合廢水處理系統。
處理工藝流程如下:
銅氨絡合廢水→調節池→破絡反應池→混凝反應池→斜管沉淀池→中間水池
有機油墨廢水→酸化除渣池→排入綜合廢水池
綜合廢水→綜合廢水池→快混池→慢混池→斜管沉淀池→中間池→過濾器→pH回調池→排放
四、常見有機類污染物廢水的處理技術
1.生活污水
較常用的生活污水處理方法是A2/O法,處理工藝流程如下:
生活污水→格柵池→調節池→厭氧池→缺氧池→好氧池→混凝反應池→沉淀池→排放
2.印染廢水
此類廢水水量大、色度高、成分復雜,一般可采取水解酸化-接觸氧化-物化法處理印染廢水。處理工藝流程如下:
印染廢水→調節池→混凝反應池1→斜沉池→水解酸化池→接觸氧化池→氧化反應池→混凝反應池2→二沉池→中間池→過濾器→清水池→排放
3.印刷油墨廢水
此類廢水特點是水量小、色度深、SS和COD等濃度高。可參考以下處理工藝:
水墨廢水→調節池→混凝氣浮池→水解酸化池→接觸氧化池→混凝反應池→斜沉池→氧化池→過濾器→清水池→排放
造紙工業廢水處理中的預處理
造紙工業所產生的廢水具有種類繁多、水量大、有機污染物含量高特點,屬難處理的工業廢水之一,廢水來源于制漿及造紙各個工藝環節中,其物理性質及有機污染物的濃度各不相同,針對廢水的特征確定有 效 的處理工藝,當前用于造紙工業廢水處理的主要方法有沉淀、氣浮、吸附、膜分離、好氧生物、厭氧生物等處理方法以及幾種工藝結合的處理方法。無論采用什么樣的方法,廢水都需要進行預處理,預處理主要是為了改善廢水水質,以便滿足各工藝的進水要求,提高廢水處理的整體效果,確保整個處理系統的穩定性,因此預處理在造紙工業廢水處理中具有非常重要的地位。造紙工業廢水處理中的預處理可分為廠內預處理和廠外預處理,廠內預處理主要是對白水中的紙漿進行回收,常采用過濾、氣浮等進行回收利用,能夠避免大量的紙漿進入廢水處理系統中,既提高了紙漿的得率又節約了廢水處理的成本;廠外預處理主要是為了保證進入物化、生化等處理系統的廢水能夠zui大程度的滿足工藝要求,能夠使系統穩定運行。
預處理工藝主要有:格柵、篩網、纖維回收系統、調節水量及水質、等工藝組成。可根據不同的造紙工業廢水水質采取不同的預處理手段,去除一部分污染物,改善廢水水質,使整個廢水處理系統的處理效果達到zui佳。
1.格柵、篩網
由于造紙工業廢水中常含有樹皮、木屑、塑料、紙漿纖維屑等細小的懸浮物,如以木材為原料的制漿廠在備料過程中排放的廢水中往往含有樹皮、木屑等,在造紙過程中的抄紙等工序中會產生大量的白水,白水中含有較高的纖維濃度。這些物質會對水泵等造成損害對主體處理工藝造成影響,特別是對生物處理中UASB、水解酸化等工藝的布水系統造成嚴重堵塞,因此在進入水泵及主體處理系統之前對其進行攔截,設置格柵攔截大懸浮物,設置篩網攔截細小懸浮物。
格柵一般用在大水量的造紙廢水處理中,由于廢水水量大,且懸浮物顆粒種類較多,設置格柵能夠有效攔截較大的懸浮物,處理能力高,不易堵塞,針對造紙廢水的特點我公司在工程實踐中一般設置粗細格柵,粗格柵柵縫間隙常采用10-15mm,細格柵柵縫間隙通常采用1-5mm。格柵機主要有回轉式機械格柵機、網式轉鏈格柵機、固定式格柵機、反切式旋轉細格柵機等,我公司常用的主要有反切式旋轉細格柵機、網式轉鏈格柵機、固定式格柵機等。
篩網通常應用在水量相對較小、廢水中含有大量的細小懸浮物如紙漿等,同時還可以去除大顆粒的漂浮物,對懸浮物及大顆粒物質的去除率可達到90%以上。工程實踐表明,篩網間隙一般為30~60目,安裝形式采用固定式安裝,安裝角度為40~50°,安裝角度不易過大,過大則造成過水負荷降低,使處理能力降低同時也增加了部分投資,過小則易造成篩網堵塞,加大了清渣難度,影響處理效果。
2.纖維回收系統
造紙廢水中含有大量的紙漿纖維,如果不對紙漿纖維進行回收,將有大量的紙漿進入廢水處理系統中,嚴重影響廢水處理系統的處理效果,同時造成紙漿浪費。廠內纖維回收系統主要用于造紙白水的纖維回收,一方面進行白水循環減少白水的排放量,另一方面采用篩網、多圓盤過濾、氣浮、沉淀等方法進行回收紙漿纖維,廠外纖維回收常采用篩網過濾的方法進行紙漿纖維的回收。
篩網過濾主要有:重力自流式篩網過濾、普通旋轉過濾機、反切單向流旋轉過濾機、雙向流旋轉過濾機等。
重力自流式篩網過濾是廢水通過集水槽溢流堰均勻布水到篩網上,由于重力作用,濾液從篩網的縫隙中流出,紙漿纖維在重力及水的沖力作用下沿篩網流入集渣槽中,達到漿水分離的作用。
普通旋轉過濾機過濾滾筒與安裝地面有一角度,廢水從上部進入滾筒,進水口濾網內壁程90度角,過濾滾筒在旋轉的過程中濾液從濾網的縫隙中排出,紙漿自動排到滾筒的另一端。
反切單向流旋轉過濾機采用臥式滾筒結構,傳動方式可分為鏈條式和齒輪式,廢水均勻布水到逆水流方向的濾網內壁上,水流與濾網形成反切相對運動,濾液從網的縫隙中排出,紙漿纖維被截留在網的內壁,在導板的作用下,從排渣端自動排出。從而達到紙漿與廢水的分離作用;反切雙向流過濾機的原理與單向流相同。
3.調節
由于造紙工業在生產過程廢水排放的多樣性,使排出的廢水的水質及水量在一日內有一定的變化,因此要求對廢水進行進行調節,均衡水質,使其能夠均勻進入后續處理單元,提高處理效果。廢水的調節主要分為:水量調節和水質調節。
廢水處理設備及構筑物都是按一定的水量標準設計的,要求均勻進水,特別對生物處理系統更為重要,為了保證后續處理系統的正常運行,在廢水進入處理系統之前,預先調節水量,使處理系統滿足設計要求。
根據造紙工業工藝的不同,廢水的水量、水質不同,調節池的停留時間也各不相同,當處理水量比較小時,停留時間可選大些,當處理水量比較大時,停留時間可根據具體情況選小些,一般為4~8個小時。
雖然廢水在進入調節之前通過格柵、纖維回收等措施去除了大部分的懸浮物,但還是會有一部分的懸浮物特別是紙漿流進調節池,為了防止沉淀,同時為了加強廢水的均勻性,可考慮在調節池內增加曝氣裝置,可有效改善廢水的水質特性。
4、結論
總之,造紙工業廢水是一種水量大、色度高、懸浮物含量大,有機物濃度高、組分復雜的難處理有機廢水,通過大量的工程實踐證明,造紙工業廢水的綜合治理工藝路線中廢水的預處理工藝是非常重要的,它關系到整個系統的穩定運行和達標排放,同時也涉及到運行成本的高低,廢水進行預處理后可大大改善廢水水質,有利于造紙廢水進行進一步處理,zui終達到去除污染物之目的。因此預處理工藝在造紙工業廢水處理中是必不可少的關鍵技術之一。
啤酒工業廢水處理與利用技術研究進展
啤酒廢水中有機物的含量較高,如直接排放,既污染 環境,又降低啤酒工業的原料利用率.為此,許多學者和廠家對啤酒廢水的處理與利用技術進行了研究.本文在闡述啤酒廢水的來源及特點的基礎上,對幾種常見的處理利用技術進行了比較,結論是:單一的處理和利用技術不能從根本上解決啤酒廢水的污染問題,只有將多 種技術結合使用,才能達到經濟效益和環境效益的統一.
關鍵詞:啤酒工業 廢水處理 廢水綜合利用
隨著人民生活水平的提高,我國啤酒工業得到了長足發展,其產量逐年上升。1988年全國有啤酒廠800多家,年產啤酒663萬t,位居世界第三;經過近十年的發展,目前已達到1000多家,年產啤酒1000多萬t,成為世界第二大啤酒生產國。但是在啤酒產量大幅度提高的同時,也向環境中排放了大量的有機廢水.據統計,每生產1t啤酒需要10~30t新鮮水,相應地產生10~20t廢水。我國現在每年排放的啤酒廢水已達1.5億t。由于這種廢水含有較高濃度的蛋白質、脂肪、纖維、碳水化合物、廢酵母.酒花殘渣等有機無 毒 成分,排入天然水體后將消耗水中的溶解氧,既造成水體缺氧,還能促使水底沉積化合物的厭氧分解,產生臭氣,惡化水質。另外,上述成分多來自啤酒生產原料,棄之不用不僅造成資源的巨大浪費,也降低了啤酒生產的原料利用率。因此,在糧食缺乏,水和資源供應緊張的今天,如何既有效地處理啤酒廢水又充分利用其中的有用資源,已成為環境保護的一項重要研究內容.本文根據前人的研究結果綜述了啤酒廢水的處理和利用現狀,以便為進一步探討效益資源型處理技術提供借鑒。
1.啤酒廢水的產生與特點
啤酒生產工藝流程包括制麥和釀造兩部分.二者均有冷卻水產生,約占啤酒廠總排水量的65%,水質較好,可循環用于浸洗麥工序。中、高污染負荷的廢水主要來自制麥中的浸麥工序和釀造中的糖化、發酵、過濾、包裝工序,其化學需氧量在500~40000mg/L之間,除了包裝工序的廢水連續排放以外,其它廢水均以間歇方式排放。
啤酒廠總排水屬于中、高濃度的有機廢水,呈酸性,pH值為4.5~6.5,其中的主要污染因子是化學需氧量(CODcr)、生化需氧量(BOD5)和懸浮物(SS),濃度分別為1000~1500,500~1000和220~440mg/L。啤酒廢水的可生化性(BOD5/CODcr)較大,為0.4~0.6,因此很多治理技術的主體部分是生化處理。
2.啤酒廢水處理技術
目前,國內外普遍采用生化法處理啤酒廢水.根據處理過程中是否需要曝氣,可把生物處理 法分為好氧生物處理和厭氧生物處理兩大類。
2.1 好氧生物處理
好氧生物處理是在氧氣充足的條件下,利用好氧微生物的生命活動氧化啤酒廢水中的有 機物,其產物是二氧化碳、水及能量(釋放于水中)。這類方法沒有考慮到廢水中有機物的利用問題,因此處理成本較高.活性污泥法、生物膜法、深井曝氣法是較有代表性的好氧生物處理方法.
2.1.1活性污泥法
活性污泥法是中、低濃度有機廢水處理中使用zui多、運行zui可靠的方法,具有投資省、處理效果好等優點。該處理工藝的主要部分是曝氣池和沉淀池。廢水進入曝氣池后,與活性污泥(含大量的好氧微生物)混合,在人工充氧的條件下,活性污泥吸附并氧化分解廢水中的有機物,而污泥和水的分離則由沉淀池來完成.我國的珠江啤酒廠、煙臺啤酒廠、上海益民啤酒廠、武漢西湖啤酒廠、廣州啤酒廠和長春啤酒廠等廠家均采用此法處理啤酒廢水。據報道,進水CODcr為1200~1500 mg/L時,出水CODcr可降至50~100mg/L,去除率為92%~96%。活性污泥法處理啤酒廢水的缺點是動力消耗大,處理中常出現污泥膨脹。
污泥膨脹的原因是啤酒廢水中碳水化合物含量過高,而N,P,Fe等營養物質缺乏,各營養成分比例失調,導致微生物不能正常生長而死亡。解決的辦法是投加含N,P的化學藥劑,但這將使處理成本提高。而較為經濟的方法是把生活污水(其中N,P濃度較大)和啤酒廢水混合。
間歇式活性污泥法(SBR)通過間歇曝氣可以使動力耗費顯著降低,同時,廢水處理時間也短于普通活性污泥法.例如,珠江啤酒廠引進比利時SBR專利技術,廢水處理時間僅需19~20h ,比普通活性污泥法縮短10~11h,CODcr的去除率也在96%以上。揚州啤酒廠和三明市大田啤酒廠采用SBR技術處理啤酒廢水,也收到了同樣的效果。SBR法對廢水的稀釋程度低,反應基質濃度高,吸附和反應 速率都較大,因而能在較短時間內使污泥獲得再生。
2.1.2 深井曝氣法
為了提高曝氣過程中氧的利用率,節省能耗,加拿大安大略省的巴利啤酒廠、我國的上海啤酒廠和北京五星啤酒廠均采用深井曝氣法(超深水曝氣)處理啤酒廢水.深井曝氣實際上是以地下深井作為曝氣池的活性污泥法,曝氣池由下降管以及上升管組成.將廢水和污泥引入下降管,在井內循環,空氣注入下降管或同時注入兩管中,混合液則由上升管排至固液分離裝置,即廢水循環是靠上升管和下降管的靜水壓力差進行的.其優點是:占地面積少,效能高,對氧的利用率大,無惡臭產生等。據測定,當進水BOD5濃度為2400mg/L時,出水濃度可降為50mg/L,去除率高達97.92%。當然,深井曝氣也有不足之處,如施工難度大,造價高,防滲漏技術不過關等。
2.1.3生物膜法
與活性污泥法不同,生物膜法是在處理池內加入軟性填料,利用固著生長于填料表面的微生物對廢水進行處理,不會出現污泥膨脹的問題.生物接觸氧化池和生物轉盤是這類方法的代表,在啤酒廢水治理中均被采用,主要是降低啤酒廢水中的BOD5。
生物接觸氧化池是在微生物固著生長的同時,加以人工曝氣.這種方法可以得到很高的生物固體濃度和較高的有機負荷,因此處理效率高,占地面積也小于活性污泥法.國內的淄博啤酒廠、青島啤酒廠、渤海啤酒廠和徐州釀酒總廠等廠家的廢水治理中采用了這種技術。青島啤酒廠在二段生物接觸氧化之后輔以混凝氣浮處理,啤酒廢水中CODcr和BOD5的去除率分別在80%和90%以上。在此基礎上,山東省環科所改常壓曝氣為加壓曝氣(P=0.25~0.30MPa),目的在于強化氧的傳質,有效提高廢水中的溶解氧濃度,以滿足中、高濃度廢水中微生物和有機物氧化分解的需要.結果表明,當容積負荷≤13.33 kg/m3.d,COD停留時間為3~4 h時,COD和BOD平均去除率分別達到93.52%和99.03%。由于停留時間縮短為原來的1/3~1/4,運轉費用也較低。生物轉盤是較早用以處理啤酒廢水的方法。它主要由盤片、氧化槽、轉動軸和驅動裝置等部分組成,依靠盤片的轉動來實現廢水與盤上生物膜的接觸和充氧,該法運轉穩定、動力消耗少,但低溫對運行影響大,在處理高濃度廢水時需增加轉盤組數。該方法在美國應用較為普及,國內的杭州啤酒廠、上海華光啤酒廠和浙江慈溪啤酒廠也在使用。據報道,廢水中BOD5的去除率在80%以上。
2.2厭氧生物處理
厭氧生物處理適用于高濃度有機廢水(CODcr>2000mg/L, BOD5>1000mg/L)。它是在無氧條件下,靠厭氣 細 菌 的作用分解有機物。在這一過程中,參加生物降解的有機基質有50%~90%轉化為沼氣(甲烷),而發酵后的剩余物又可作為優 質 肥料和飼料。因此,啤酒廢水的厭氧生物處理受到了越來越多的關注。
厭氧生物處理包括多種方法,但以升流式厭氧污泥床(UASB)技術在啤酒廢水的治理方面應用zui為成熟。UASB的主要組成部分是反應器,其底部為絮凝和沉淀性能良好的厭氧污泥構成的污泥床,上部設置了一個專用的氣-液-固分離系統(三相分離室)。廢水從反應器底部加入,在上向流、穿過生物顆粒組成的污泥床時得到降解,同時生成沼氣(氣泡).氣、液、固(懸浮污泥顆粒)一同升入三相分離室,氣體被收集在氣罩里,而污泥顆粒受重力作用下沉至反應器底部,水則經出流堰排出. 截止1990年9月,全世界已建成30座生產性UASB反應器用于處理啤酒廢水,總容積達60600m3。國內已有北京啤酒廠、沈陽啤酒廠等廠家利用UASB來處理啤酒廢水.荷蘭、美國的某些公司所設計的UASB反應器對啤酒廢水CODcr的去除率為80%~86%,北京啤酒廠UASB處理裝置的中試結果也保持在這一水平,而且其沼氣 產率為0.3~0.5m3/kg (COD)。清華大學在常溫條件下利用UASB厭氧 處理啤酒廢水的研究結果表明,進水CODcr濃度為2000mg/L時,去除率為85%~90%。沈陽啤酒廠采用回收固形物及厭氧消化綜合治理工藝,實行清污分流,集中收集CODcr大于5000mg/L的高濃度有機廢水送入UASB進行厭氧處理,廢水中CODcr的質能利用率可達91.93%。
實踐證明,UASB成功處理高濃度啤酒廢水的關鍵是培養出沉降性能良好的厭氧顆粒污泥。顆粒污泥的形成是厭氧細 菌 群不斷繁殖、積累的結果,較多的污泥負荷有利于細 菌 獲得充足的營養基質,故對顆粒污泥的形成和發展具有決定性的促進作用;適當高的水力負荷將產生污泥的水力篩選,淘汰沉降性能差的絮體污泥而留下沉降性能好的污泥,同時產生剪切力,使污泥不斷旋轉,有利于絲狀菌互相纏繞成球。此外,一定的進水堿度也是顆粒污泥形成的必要條件,因為厭氧生物的生長要求適當高的堿度,例如:產甲烷細 菌 生長的zui適宜pH值為6.8~7.2.一定的堿度既能維持細 菌 生長所需的pH值,又能保證足夠的平衡緩沖能力。由于啤酒廢水的堿度一般為500~800mg/L (以CaCO3計),堿度不足,所以需投加工業碳酸鈉或氧化鈣加以補充。研究表明,在UASB啟動階段,保持進水堿度不低于1000 mg/L對于顆粒污泥的培養和反應器在高負荷下的良好運行十分必要。應該指出,啤酒廢水中的乙醇是一種有 效 的顆粒化促進劑,它為UASB的成功運行提供了十分有利的條件。總之,UASB具有效能高,處理費用低,電耗省,投資少,占地面積小等一系列優點,完全適用于高濃度啤酒廢水的治理.其不足之處是出水CODcr的濃度仍達500mg/L左右,需進行再處理或與好氧處理串聯才能達標排放。
3 啤酒廢水的利用技術
利用自然生態良性循環的方法凈化和利用啤酒廢水,也是目前啤酒廢水綜合治理的一個 方向,有利于實現廢物的資源化。
3.1 啤酒廢水土地利用
廢水的土地利用在國內外都有悠久的歷史。其目的不單純是廢水農田灌溉,而是根據生態學原理,在充分利用水資源的同時,科學地運用土壤-植物系統的凈化功能,使該系統起到廢水的二、三級處理作用。廢水的土地利用一般有快速滲濾和地表漫流兩種方法。前者的特點是加入的廢水大部分都經過土壤滲透到下層,因而僅 限 于在砂及砂質粘土之類的快滲土壤上使用,植物對廢水的凈化作用較小,主要是由土壤中發生的物理、化學和生物學過程使廢水得到處理。后者是一種固定膜生物處理法,廢水從生長植物的坡地上游沿溝渠流下,流經植被表面后排入徑流集水渠.廢水凈化主要是通過坡地上的生物膜完成的。這種方法對于滲透較慢的土壤zui為適用。啤酒廢水經過土地利用系統后,水質明顯改善,能夠達到農田灌溉水質標準(GB5084-85)的要求;同時又可節省水源,增加農田土壤的有機質含量,提高農作物產量.其經濟效益在干旱地區更能得到體現。當然,啤酒廢水的土地利用也存在一定的問題:
①處理過程中會產生臭味,必須將處理 場地設在遠離居住區的地方,這樣需要較長的輸水干管;
②廢水的含鹽量過高時,將危害植 物生長,并造成土壤排水、通氣不良.如何避免這些問題發生,需要進一步研究。
3.2 啤酒廢水的植物凈化
啤酒廢水中有機碳含量豐富,氮、磷的含量也有一定水平,可以為植物生長提供必要的 營養物質。近年來,一些學者利用啤酒廢水對普通絲瓜(Luffacyclindrica)、多花黑麥草(Lolium multiflorum)、水雍菜(Ipomoea aquatica)、金針菜(Hemerocallis fulva)等植物進行水培試驗,發現這些植物長勢良好并能完成其生活史,既創造了經濟效益,同時又顯著降低了廢水中多種污染物(COD除外)的濃度。這為啤酒廢水的資源化處理開拓了一條新思路。據報道,目前,無錫市釀酒總廠已在氧化塘中種植絲瓜以強化處理系統的凈化效果。